

ADVANCED GCE

Probability & Statistics 2

Candidates answer on the Answer Booklet

OCR Supplied Materials:

- 8 page Answer Booklet
- List of Formulae (MF1)

Other Materials Required: None

Wednesday 17 June 2009 Morning

Duration: 1 hour 30 minutes

4733

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do **not** write in the bar codes.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is **72**.
- This document consists of 4 pages. Any blank pages are indicated.

- 2 The random variable D has the distribution Po(20). Using an appropriate approximation, which should be justified, calculate $P(D \ge 25)$. [6]
- 3 An electronics company is developing a new sound system. The company claims that 60% of potential buyers think that the system would be good value for money. In a random sample of 12 potential buyers, 4 thought that it would be good value for money. Test, at the 5% significance level, whether the proportion claimed by the company is too high. [7]
- 4 A survey is to be carried out to draw conclusions about the proportion p of residents of a town who support the building of a new supermarket. It is proposed to carry out the survey by interviewing a large number of people in the high street of the town, which attracts a large number of tourists.
 - (i) Give two different reasons why this proposed method is inappropriate. [2]
 - (ii) Suggest a good method of carrying out the survey. [3]
 - (iii) State two statistical properties of your survey method that would enable reliable conclusions about *p* to be drawn. [2]
- 5 In a large region of derelict land, bricks are found scattered in the earth.
 - (i) State two conditions needed for the number of bricks per cubic metre to be modelled by a Poisson distribution. [2]

Assume now that the number of bricks in 1 cubic metre of earth can be modelled by the distribution Po(3).

- (ii) Find the probability that the number of bricks in 4 cubic metres of earth is between 8 and 14 inclusive. [3]
- (iii) Find the size of the largest volume of earth for which the probability that no bricks are found is at least 0.4. [4]
- 6 The continuous random variable *R* has the distribution N(μ , σ^2). The results of 100 observations of *R* are summarised by

$$\Sigma r = 3360.0, \quad \Sigma r^2 = 115\,782.84.$$

- (i) Calculate an unbiased estimate of μ and an unbiased estimate of σ^2 . [4]
- (ii) The mean of 9 observations of R is denoted by \overline{R} . Calculate an estimate of P($\overline{R} > 32.0$). [4]
- (iii) Explain whether you need to use the Central Limit Theorem in your answer to part (ii). [2]

7 The continuous random variable *X* has probability density function given by

$$f(x) = \begin{cases} \frac{2}{9}x(3-x) & 0 \le x \le 3, \\ 0 & \text{otherwise.} \end{cases}$$

- (i) Find the variance of *X*.
- (ii) Show that the probability that a single observation of X lies between 0.0 and 0.5 is $\frac{2}{27}$. [2]
- (iii) 108 observations of X are obtained. Using a suitable approximation, find the probability that at least 10 of the observations lie between 0.0 and 0.5. [6]
- (iv) The mean of 108 observations of X is denoted by \overline{X} . Write down the approximate distribution of \overline{X} , giving the value(s) of any parameter(s). [3]
- 8 In a large company the time taken for an employee to carry out a certain task is a normally distributed random variable with mean 78.0 s and unknown variance. A new training scheme is introduced and after its introduction the times taken by a random sample of 120 employees are recorded. The mean time for the sample is 76.4 s and an unbiased estimate of the population variance is 68.9 s^2 .
 - (i) Test, at the 1% significance level, whether the mean time taken for the task has changed. [7]
 - (ii) It is required to redesign the test so that the probability of making a Type I error is less than 0.01 when the sample mean is 77.0 s. Calculate an estimate of the smallest sample size needed, and explain why your answer is only an estimate. [4]

[5]

4733 Probability & Statistics 2

4733

1	$\frac{105.0 - \mu}{\sigma} = -0.7; \frac{110.0 - \mu}{\sigma} = -0.5$ Solve: $\sigma = 25$ $\mu = 122.5$	M1 A1 B1 M1 A1 A1	6	Standardise once, equate to Φ^{-1} , allow σ^2 Both correct including signs & σ , no cc (continuity correction), allow wrong z Both correct z-values. "1–" errors: M1A0B1 Get either μ or σ by solving simultaneously σ a.r.t. 25.0 $\mu = 122.5 \pm 0.3$ or 123 if clearly correct, allow from σ^2 but <i>not</i> from $\sigma = -25$.
2	Po(20) ≈ N(20, 20) Normal approx. valid as $\lambda > 15$ $1-\Phi\left(\frac{24.5-20}{\sqrt{20}}\right) = 1-\Phi(1.006)$ = 1 - 0.8427 = 0.1573	M1 A1 B1 M1 A1 A1	6	Normal stated or implied (20, 20) or (20, $\sqrt{20}$) or (20, 20^2), can be implied "Valid as $\lambda > 15$ ", or "valid as λ large" Standardise 25, allow wrong or no cc, $\sqrt{20}$ errors $1.0 < z \le 1.01$ Final answer, art 0.157
3	H ₀ : $p = 0.6$, H ₁ : $p < 0.6$ where p is proportion in population who believe it's good value $R \sim B(12, 0.6)$ α : P($R \le 4$) = 0.0573 > 0.05	B2 M1 A1 B1		Both, B2. Allow π , % One error, B1, except <i>x</i> or \overline{x} or <i>r</i> or <i>R</i> : 0 B(12, 0.6) stated or implied, e.g. N(7.2, 2.88) <i>Not</i> P(< 4) or P(≥ 4) or P(= 4) Must be using P(≤ 4), or P(> 4) < 0.95 and binomial
	β: CR is ≤ 3 and 4 > 3 p = 0.0153 Do not reject H ₀ . Insufficient evidence that the proportion who believe it's good value for money is less than 0.6	B1 A1 M1 A1	7	Must be using CR; explicit comparison needed Correct conclusion, needs B(12,0.6) and ≤ 4 Contextualised, some indication of uncertainty [SR: N(7.2,) or Po(7.2): poss B2 M1A0] [SR: P(< 4) or P(= 4) or P(≥ 4): B2 M1A0]
4 (i)	Eg "not all are residents"; "only those in street asked"	B1 B1	2	One valid relevant reason A definitely different valid relevant reason <i>Not</i> "not a random sample", <i>not</i> "takes too long"
(ii)	Obtain list of whole population Number it sequentially Select using random numbers [Ignore method of making contact]	B1 B1 B1	3	"Everyone" or "all houses" must be implied Not "number it with random numbers" unless then "arrange in order of random numbers" SR: "Take a random sample": B1 SR: Systematic: B1 B0, B1 if start randomly chosen
(iii)	Two of: α : Members of population equally likely to be chosen β : Chosen independently/randomly γ : Large sample (e.g. > 30)	B1 B1	2	One reason. NB : If "independent", must be "chosen" independently, not "views are independent" Another reason. Allow "fixed sample size" but not both that and "large sample". Allow "houses"

Mark Scheme

5	(i)	Bricks scattered at constant average rate & independently of one another	B1 B1	2	B1 for each of 2 different reasons, in context. (Treat "randomly" ≡ "singly" ≡ "independently")
	(ii)	Po(12) $P(\le 14) - P(\le 7)$ [= .77200895] [or P(8) + P(9) + + P(14)]	B1 M1		Po(12) stated or implied Allow one out at either end or both, eg 0.617, or wrong column, but <i>not</i> from Po(3) nor, eg, .9105 – .7720
		= 0.6825	A1	3	Answer in range [0.682, 0.683]
	(iii)	$e^{-\lambda} = 0.4$ $\lambda = -\ln (0.4)$ = 0.9163 Volume = 0.9163 ÷ 3 = 0.305	B1 M1 A1 M1	4	This equation, aef, can be implied by, eg 0.9 Take ln, or 0.91 by T & I λ art 0.916 or 0.92, can be implied Divide their λ value by 3 [SR : Tables, eg 0.9÷3: B1 M0 A0 M1]
6	(i)	$\frac{33.6}{\frac{115782.84}{100} - 33.6^2} [= 28.8684]$ × $\frac{100}{99}$ = 29.16	B1 M1 M1 A1	4	33.6 clearly stated [not recoverable later] Correct formula used for biased estimate $\times \frac{100}{99}$, M's independent. Eg $\frac{\Sigma r^2}{99}$ [-33.6 ²] SR B1 variance in range [29.1, 29.2]
	(ii)	$\overline{R} \sim N(33.6, 29.16/9) = N(33.6, 1.8^2) = 0.8889 $ $1 - \Phi\left(\frac{32 - 33.6}{\sqrt{3.24}}\right) [= \Phi(0.8889)] = 0.8130$	M1 A1 M1 A1	4	Normal, their μ , stated or implied Variance [their (i)]÷9 [<i>not</i> ÷100] Standardise & use Φ , 9 used, answer > 0.5, allow $\sqrt{\text{errors}}$, allow cc 0.05 but <i>not</i> 0.5 Answer, art 0.813
	(iii)	No, distribution of <i>R</i> is normal so that of \overline{R} is normal	B2	2	Must be saying this. Eg "9 is not large enough": B0. Both: B1 max, unless saying that <i>n</i> is irrelevant.
7	(i)	$\frac{2}{9} \int_{0}^{3} x^{3} (3-x) dx = \frac{2}{9} \left[\frac{3x^{4}}{4} - \frac{x^{5}}{5} \right]_{0}^{3} [= 2.7] - (1\frac{1}{2})^{2} = \frac{9}{20} \text{ or } 0.45$	M1 A1 B1 M1 A1	5	Integrate $x^2 f(x)$ from 0 to 3 [<i>not</i> for μ] Correct indefinite integral Mean is 1 ¹ / ₂ , soi [not recoverable later] Subtract their μ^2 Answer art 0.450
	(ii)	$\frac{2}{9} \int_{0}^{0.5} x(3-x) dx = \frac{2}{9} \left[\frac{3x^2}{2} - \frac{x^3}{3} \right]_{0}^{0.5}$ $= \frac{2}{27} \text{ AG}$	M1 A1	2	Integrate $f(x)$ between 0, 0.5, must be seen somewhere Correctly obtain given answer $\frac{2}{27}$, decimals other than 0.5 not allowed, 1 more line needed (eg [] = $\frac{1}{3}$)
	(iii)	B(108, $\frac{2}{27}$) ≈ N(8, 7.4074) $1 - \Phi\left(\frac{9.5 - 8}{\sqrt{7.4074}}\right)$ = 1 - $\Phi(0.5511)$ = 0.291	B1 M1 A1 M1 A1 A1	6	B(108, $\frac{2}{27}$) seen or implied, eg Po(8) Normal, mean 8 variance (or SD) 200/27 or art 7.41 Standardise 10, allow $\sqrt{\text{errors}}$, wrong or no cc, needs to be using B(108,) Correct $\sqrt{\text{and cc}}$ Final answer, art 0.291

	(iv)	$\overline{X} \sim N(1.5, \frac{1}{240})$	B1 B1√ B1√ 3	NormalNB: not part (iii)Mean their μ Variance or SD (their 0.45)/108 [not (8, 50/729)]
8	(i)	H ₀ : $\mu = 78.0$ H ₁ : $\mu \neq 78.0$ $z = \frac{76.4 - 78.0}{\sqrt{68.9/120}} = -2.1115$ > - 2.576 or 0.0173 > 0.005 78 ± $z\sqrt{(68.9/120)}$ = 76.048 76.4 > 76.048	B1 B1 M1 A1 B1 M1 A1√ B1	Both correct, B2. One error, B1, but x or \bar{x} : B0. Needs $\pm (76.4 - 78)/\sqrt{(\sigma \div 120)}$, allow $\sqrt{\text{errors}}$ art -2.11, or $p = 0.0173 \pm 0.0002$ Compare z with (-)2.576, or p with 0.005 Needs 78 and 120, can be - only Correct CV to 3 sf, $\sqrt{\text{ on } z}$ $z = 2.576$ and compare 76.4, allow from 78 \leftrightarrow 76.4
		Do not reject H_0 . Insufficient evidence that the mean time has changed	M1 A1√ 7	Correct comparison & conclusion, needs 120, "like with like", correct tail, \bar{x} and μ right way round Contextualised, some indication of uncertainty
	(ii)	$\frac{1}{\sqrt{68.9/n}} > 2.576$ $\sqrt{n} > 21.38,$ $n_{\min} = 458$ Variance is estimated	M1 M1 A1 B1 4	IGNORE INEQUALITIES THROUGHOUT Standardise 1 with <i>n</i> and 2.576, allow $\sqrt{\text{errors}}$, cc etc but <i>not</i> 2.326 Correct method to solve for \sqrt{n} (<i>not</i> from <i>n</i>) 458 only (<i>not</i> 457), <i>or</i> 373 from 2.326, signs correct Equivalent statement, allow "should use <i>t</i> ". In principle nothing superfluous, but "variance stays same" B1 bod

Specimen Answers

Ouestie	on 4: Part (i)	
α	Takes too long/too slow	B0
β	Interviewing people in the street isn't a random sample	B0
γ	Many tourists so not representative	B1
δ	Those who don't shop won't have their views considered	B1
3	Interviewers biased as to who they ask	B1
ζ	Views influenced by views of others	B1
Part (ii)		
α	Choose a random sample of the town and ask their opinion	B1
β	Choose names at random from the town's phone book	B1
γ	A random number machine determines which house numbers should be used, and	B0B0B1
	every street should have the same proportion of residents interviewed	
δ	Visit everyone door to door and give them a questionnaire	B1B0B0
3	Assign everyone a number and select randomly	B1B0B0
ζ	Assign everyone a number and select using random numbers	B1B0B1
η	Ditto + "ignoring numbers that don't correspond to a resident"	B1B1B1
θ	Assign each eligible person a number and pick numbers from a hat	B1B1B0
ι	Put names of all residents into a hat and pick them out	B1B1B0

t Put names of all residents into a hat and pick them out

[NB: postal survey is biased]

Part (ii	ii)	
α	One person's view should not affect another's	B0
β	It is without bias	B0
γ	Results occur randomly	B0
δ	Should be asked if they are for or against (binomial testing)	B0
3	It will survey a diverse group from different areas so should be representative	B0
ζ	Everyone's should be chose independently of everyone else	B1
η	The sample size must be large	B1
θ	Participants are chosen at random and independently from one another	B1 only
	[though η & θ together would get B2]	

Question 5 (i)

-			
α	Number of bricks must always be the same		
β	Results occur randomly		B0
γ	The chance of a brick being in one place is always the same		
δ	Events must occur independently and at constant average rate		B0
3	They must occur independently and at constant average rate		
ζ	Bricks' locations must be random and independent	[effectively the same]	B1 only
η	Only one brick in any one place; bricks independent	[effectively the same]	B1 only